Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Neurophysiol ; 129(5): 1157-1176, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37018758

RESUMO

The otolith end organs inform the brain about gravitational and linear accelerations, driving the otolith-ocular reflex (OOR) to stabilize the eyes during translational motion (e.g., moving forward without rotating) and head tilt with respect to gravity. We previously characterized OOR responses of normal chinchillas to whole body tilt and translation and to prosthetic electrical stimulation targeting the utricle and saccule via electrodes implanted in otherwise normal ears. Here we extend that work to examine OOR responses to tilt and translation stimuli after unilateral intratympanic gentamicin injection and to natural/mechanical and prosthetic/electrical stimulation delivered separately or in combination to animals with bilateral vestibular hypofunction after right ear intratympanic gentamicin injection followed by surgical disruption of the left labyrinth at the time of electrode implantation. Unilateral intratympanic gentamicin injection decreased natural OOR response magnitude to about half of normal, without markedly changing OOR response direction or symmetry. Subsequent surgical disruption of the contralateral labyrinth at the time of electrode implantation surgery further decreased OOR magnitude during natural stimulation, consistent with bimodal-bilateral otolith end organ hypofunction (ototoxic on the right ear, surgical on the left ear). Delivery of pulse frequency- or pulse amplitude-modulated prosthetic/electrical stimulation targeting the left utricle and saccule in phase with whole body tilt and translation motion stimuli yielded responses closer to normal than the deficient OOR responses of those same animals in response to head tilt and translation alone.NEW & NOTEWORTHY Previous studies to expand the scope of prosthetic stimulation of the otolith end organs showed that selective stimulation of the utricle and saccule is possible. This article further defines those possibilities by characterizing a diseased animal model and subsequently studying its responses to electrical stimulation alone and in combination with mechanical motion. We show that we can partially restore responses to tilt and translation in animals with unilateral gentamicin ototoxic injury and contralateral surgical disruption.


Assuntos
Ototoxicidade , Vestíbulo do Labirinto , Animais , Reflexo Vestíbulo-Ocular/fisiologia , Membrana dos Otólitos/fisiologia , Chinchila , Gentamicinas
3.
Otol Neurotol ; 44(2): 168-171, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36624598

RESUMO

OBJECTIVE: To determine whether prosthetic stimulation delivered via a vestibular implant can elicit artificial sensation of head movement despite long (23-yr) duration adult-onset ototoxic bilateral vestibular hypofunction (BVH). STUDY DESIGN: Case report. SETTING: Tertiary care center as part of a first-in-human clinical trial. PATIENTS: One. INTERVENTIONS: Unilateral vestibular implantation with an investigational multichannel vestibular implant in a 55-year-old man with a well-documented 23-year history of aminoglycoside-induced BVH. MAIN OUTCOME MEASURES: Electrically evoked vestibulo-ocular reflexes (eeVOR). RESULTS: Vestibular implant stimulation can drive stimulus-aligned eeVOR and elicit a vestibular percept 23 years after the onset of bilateral vestibulopathy. Prosthetic stimulation targeting individual semicircular canals elicited eye movements that approximately aligned with each targeted canal's axis. The magnitude of the eeVOR response increased with increasing stimulus current amplitude. Response alignment and magnitude were similar to those observed for implant recipients who underwent vestibular implantation less than 10 years after BVH onset. Responses were approximately stable for 18 months of continuous device use (24 h/d except during sleep). CONCLUSIONS: Vestibular implantation and prosthetic electrical stimulation of semicircular canal afferent nerves can drive canal-specific eye movement responses more than 20 years after the onset of ototoxic vestibular hypofunction.


Assuntos
Vestibulopatia Bilateral , Ototoxicidade , Vestíbulo do Labirinto , Adulto , Masculino , Humanos , Pessoa de Meia-Idade , Canais Semicirculares/cirurgia , Aminoglicosídeos , Antibacterianos , Reflexo Vestíbulo-Ocular
4.
IEEE Trans Instrum Meas ; 70: 1-9, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776080

RESUMO

OBJECTIVE: Vestibular and oculomotor research often requires measurement of 3-dimensional (3D) eye orientation and movement with high spatial and temporal precision and accuracy. We describe the design, implementation, validation and use of a new magnetic coil system optimized for recording 3D eye movements using small scleral coils in animals. METHODS: Like older systems, the system design uses off-the-shelf components to drive three mutually orthogonal alternating magnetic fields at different frequencies. The scleral coil voltage induced by those fields is decomposed into 3 signals, each related to the coil's orientation relative to the axis of one field component. Unlike older systems based on analog demodulation and filtering, this system uses a field-programmable gate array (FPGA) to oversample each induced scleral coil voltage (at 25 Msamples/s), demodulate in the digital domain, and average over 25 ksamples per data point to generate 1 ksamples/s output in real time. RESULTS: Noise floor is <0.036° peak-to-peak and linearity error is < 0.1° during 345° rotations in all three dimensions. CONCLUSION AND SIGNIFICANCE: This FPGA-based design, which is both reprogrammable and freely available upon request, delivers sufficient performance to record eye movements at high spatial and temporal precision and accuracy using coils small enough for use with small animals.

5.
N Engl J Med ; 384(6): 521-532, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33567192

RESUMO

BACKGROUND: Bilateral vestibular hypofunction is associated with chronic disequilibrium, postural instability, and unsteady gait owing to failure of vestibular reflexes that stabilize the eyes, head, and body. A vestibular implant may be effective in alleviating symptoms. METHODS: Persons who had had ototoxic (7 participants) or idiopathic (1 participant) bilateral vestibular hypofunction for 2 to 23 years underwent unilateral implantation of a prosthesis that electrically stimulates the three semicircular canal branches of the vestibular nerve. Clinical outcomes included the score on the Bruininks-Oseretsky Test of Motor Proficiency balance subtest (range, 0 to 36, with higher scores indicating better balance), time to failure on the modified Romberg test (range, 0 to 30 seconds), score on the Dynamic Gait Index (range, 0 to 24, with higher scores indicating better gait performance), time needed to complete the Timed Up and Go test, gait speed, pure-tone auditory detection thresholds, speech discrimination scores, and quality of life. We compared participants' results at baseline (before implantation) with those at 6 months (8 participants) and at 1 year (6 participants) with the device set in its usual treatment mode (varying stimulus pulse rate and amplitude to represent rotational head motion) and in a placebo mode (holding pulse rate and amplitude constant). RESULTS: The median scores at baseline and at 6 months on the Bruininks-Oseretsky test were 17.5 and 21.0, respectively (median within-participant difference, 5.5 points; 95% confidence interval [CI], 0 to 10.0); the median times on the modified Romberg test were 3.6 seconds and 8.3 seconds (difference, 5.1; 95% CI, 1.5 to 27.6); the median scores on the Dynamic Gait Index were 12.5 and 22.5 (difference, 10.5 points; 95% CI, 1.5 to 12.0); the median times on the Timed Up and Go test were 11.0 seconds and 8.7 seconds (difference, 2.3; 95% CI, -1.7 to 5.0); and the median speeds on the gait-speed test were 1.03 m per second and 1.10 m per second (difference, 0.13; 95% CI, -0.25 to 0.30). Placebo-mode testing confirmed that improvements were due to treatment-mode stimulation. Among the 6 participants who were also assessed at 1 year, the median within-participant changes from baseline to 1 year were generally consistent with results at 6 months. Implantation caused ipsilateral hearing loss, with the air-conducted pure-tone average detection threshold at 6 months increasing by 3 to 16 dB in 5 participants and by 74 to 104 dB in 3 participants. Changes in participant-reported disability and quality of life paralleled changes in posture and gait. CONCLUSIONS: Six months and 1 year after unilateral implantation of a vestibular prosthesis for bilateral vestibular hypofunction, measures of posture, gait, and quality of life were generally in the direction of improvement from baseline, but hearing was reduced in the ear with the implant in all but 1 participant. (Funded by the National Institutes of Health and others; ClinicalTrials.gov number, NCT02725463.).


Assuntos
Vestibulopatia Bilateral/cirurgia , Marcha/fisiologia , Perda Auditiva/etiologia , Neuroestimuladores Implantáveis , Equilíbrio Postural/fisiologia , Qualidade de Vida , Vestíbulo do Labirinto/cirurgia , Idoso , Vestibulopatia Bilateral/induzido quimicamente , Vestibulopatia Bilateral/complicações , Tontura/etiologia , Feminino , Transtornos Neurológicos da Marcha/etiologia , Humanos , Neuroestimuladores Implantáveis/efeitos adversos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias , Estudos Prospectivos , Canais Semicirculares/inervação , Nervo Vestibular/efeitos dos fármacos
6.
J Neurophysiol ; 123(1): 259-276, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31747349

RESUMO

From animal experiments by Cohen and Suzuki et al. in the 1960s to the first-in-human clinical trials now in progress, prosthetic electrical stimulation targeting semicircular canal branches of the vestibular nerve has proven effective at driving directionally appropriate vestibulo-ocular reflex eye movements, postural responses, and perception. That work was considerably facilitated by the fact that all hair cells and primary afferent neurons in each canal have the same directional sensitivity to head rotation, the three canals' ampullary nerves are geometrically distinct from one another, and electrically evoked three-dimensional (3D) canal-ocular reflex responses approximate a simple vector sum of linearly independent components representing relative excitation of each of the three canals. In contrast, selective prosthetic stimulation of the utricle and saccule has been difficult to achieve, because hair cells and afferents with many different directional sensitivities are densely packed in those endorgans and the relationship between 3D otolith-ocular reflex responses and the natural and/or prosthetic stimuli that elicit them is more complex. As a result, controversy exists regarding whether selective, controllable stimulation of electrically evoked otolith-ocular reflexes (eeOOR) is possible. Using micromachined, planar arrays of electrodes implanted in the labyrinth, we quantified 3D, binocular eeOOR responses to prosthetic electrical stimulation targeting the utricle, saccule, and semicircular canals of alert chinchillas. Stimuli delivered via near-bipolar electrode pairs near the maculae elicited sustained ocular countertilt responses that grew reliably with pulse rate and pulse amplitude, varied in direction according to which stimulating electrode was employed, and exhibited temporal dynamics consistent with responses expected for isolated macular stimulation.NEW & NOTEWORTHY As the second in a pair of papers on Binocular 3D Otolith-Ocular Reflexes, this paper describes new planar electrode arrays and vestibular prosthesis architecture designed to target the three semicircular canals and the utricle and saccule. With this technological advancement, electrically evoked otolith-ocular reflexes due to stimulation via utricle- and saccule-targeted electrodes were recorded in chinchillas. Results demonstrate advances toward achieving selective stimulation of the utricle and saccule.


Assuntos
Chinchila/fisiologia , Movimentos Oculares/fisiologia , Próteses Neurais , Membrana dos Otólitos/fisiologia , Reflexo Vestíbulo-Ocular/fisiologia , Sáculo e Utrículo/fisiologia , Canais Semicirculares/fisiologia , Animais , Estimulação Elétrica , Tecnologia de Rastreamento Ocular
7.
J Neurophysiol ; 123(1): 243-258, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31747360

RESUMO

Head rotation, translation, and tilt with respect to a gravitational field elicit reflexive eye movements that partially stabilize images of Earth-fixed objects on the retinas of humans and other vertebrates. Compared with the angular vestibulo-ocular reflex, responses to translation and tilt, collectively called the otolith-ocular reflex (OOR), are less completely characterized, typically smaller, generally disconjugate (different for the 2 eyes) and more complicated in their relationship to the natural stimuli that elicit them. We measured binocular 3-dimensional OOR responses of 6 alert normal chinchillas in darkness during whole body tilts around 16 Earth-horizontal axes and translations along 21 axes in horizontal, coronal, and sagittal planes. Ocular countertilt responses to 40-s whole body tilts about Earth-horizontal axes grew linearly with head tilt amplitude, but responses were disconjugate, with each eye's response greatest for whole body tilts about axes near the other eye's resting line of sight. OOR response magnitude during 1-Hz sinusoidal whole body translations along Earth-horizontal axes also grew with stimulus amplitude. Translational OOR responses were similarly disconjugate, with each eye's response greatest for whole body translations along its resting line of sight. Responses to Earth-horizontal translation were similar to those that would be expected for tilts that would cause a similar peak deviation of the gravitoinertial acceleration (GIA) vector with respect to the head, consistent with the "perceived tilt" model of the OOR. However, that model poorly fit responses to translations along non-Earth-horizontal axes and was insufficient to explain why responses are larger for the eye toward which the GIA vector deviates.NEW & NOTEWORTHY As the first in a pair of papers on Binocular 3D Otolith-Ocular Reflexes, this paper characterizes binocular 3D eye movements in normal chinchillas during tilts and translations. The eye movement responses were used to create a data set to fully define the normal otolith-ocular reflexes in chinchillas. This data set provides the foundation to use otolith-ocular reflexes to back-project direction and magnitude of eye movement to predict tilt axis as discussed in the companion paper.


Assuntos
Comportamento Animal/fisiologia , Chinchila/fisiologia , Movimentos Oculares/fisiologia , Membrana dos Otólitos/fisiologia , Reflexo Vestíbulo-Ocular/fisiologia , Sáculo e Utrículo/fisiologia , Animais , Visão Binocular/fisiologia
8.
JCI Insight ; 4(22)2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31723056

RESUMO

BACKGROUNDBilateral loss of vestibular (inner ear inertial) sensation causes chronically blurred vision during head movement, postural instability, and increased fall risk. Individuals who fail to compensate despite rehabilitation therapy have no adequate treatment options. Analogous to hearing restoration via cochlear implants, prosthetic electrical stimulation of vestibular nerve branches to encode head motion has garnered interest as a potential treatment, but prior studies in humans have not included continuous long-term stimulation or 3D binocular vestibulo-ocular reflex (VOR) oculography, without which one cannot determine whether an implant selectively stimulates the implanted ear's 3 semicircular canals.METHODSWe report binocular 3D VOR responses of 4 human subjects with ototoxic bilateral vestibular loss unilaterally implanted with a Labyrinth Devices Multichannel Vestibular Implant System vestibular implant, which provides continuous, long-term, motion-modulated prosthetic stimulation via electrodes in 3 semicircular canals.RESULTSInitiation of prosthetic stimulation evoked nystagmus that decayed within 30 minutes. Stimulation targeting 1 canal produced 3D VOR responses approximately aligned with that canal's anatomic axis. Targeting multiple canals yielded responses aligned with a vector sum of individual responses. Over 350-812 days of continuous 24 h/d use, modulated electrical stimulation produced stable VOR responses that grew with stimulus intensity and aligned approximately with any specified 3D head rotation axis.CONCLUSIONThese results demonstrate that a vestibular implant can selectively, continuously, and chronically provide artificial sensory input to all 3 implanted semicircular canals in individuals disabled by bilateral vestibular loss, driving reflexive VOR eye movements that approximately align in 3D with the head motion axis encoded by the implant.TRIAL REGISTRATIONClinicalTrials.gov: NCT02725463.FUNDINGNIH/National Institute on Deafness and Other Communication Disorders: R01DC013536 and 2T32DC000023; Labyrinth Devices, LLC; and Med-El GmbH.


Assuntos
Vestibulopatia Bilateral , Estimulação Elétrica/instrumentação , Próteses Neurais , Reflexo Vestíbulo-Ocular/fisiologia , Vestíbulo do Labirinto , Vestibulopatia Bilateral/fisiopatologia , Vestibulopatia Bilateral/cirurgia , Humanos , Ototoxicidade/fisiopatologia , Ototoxicidade/cirurgia , Desenho de Prótese , Vestíbulo do Labirinto/fisiopatologia , Vestíbulo do Labirinto/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...